Published in

Wiley, Clinical Genetics, 4(75), p. 394-400, 2009

DOI: 10.1111/j.1399-0004.2008.01114.x

Links

Tools

Export citation

Search in Google Scholar

Dominant versus recessive traits conveyed by allelic mutations - to what extent is nonsense-mediated decay involved?

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mutations in ROR2, encoding a receptor tyrosine kinase, can cause autosomal recessive Robinow syndrome (RRS), a severe skeletal dysplasia with limb shortening, brachydactyly, and a dysmorphic facial appearance. Other mutations in ROR2 result in the autosomal dominant disease, brachydactyly type B (BDB1). No functional mechanisms have been delineated to effectively explain the association between mutations and different modes of inheritance causing different phenotypes. BDB1-causing mutations in ROR2 result from heterozygous premature termination codons (PTCs) in downstream exons and the conveyed phenotype segregates as an autosomal dominant trait, whereas heterozygous missense mutations and PTCs in upstream exons result in carrier status for RRS. Given that the distribution of PTC mutations revealed a correlation between the phenotype and the mode of inheritance conveyed, we investigated the potential role for the nonsense-mediated decay (NMD) pathway in the abrogation of possible aberrant effects of selected mutant alleles. Our experiments show that triggering or escaping NMD may cause different phenotypes with a distinct mode of inheritance. We generalize these findings to other disease-associated genes by examining PTC mutation distribution correlation with conveyed phenotype and inheritance patterns. Indeed, NMD may explain distinct phenotypes and different inheritance patterns conveyed by allelic truncating mutations enabling better genotype-phenotype correlations in several other disorders.