Published in

Elsevier, Sleep Medicine Reviews, 1(13), p. 9-22, 2009

DOI: 10.1016/j.smrv.2008.05.002

Links

Tools

Export citation

Search in Google Scholar

Hypocretin/orexin disturbances in neurological disorders.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The hypothalamic hypocretin (orexin) system plays a crucial role in the regulation of sleep and wakefulness. The strongest evidence for this is the fact that the primary sleep disorder narcolepsy is caused by disrupted hypocretin signaling in humans as well as various animal models. There is a growing interest in the role of hypocretin defects not only in the pathophysiology of other sleep disorders, but also in neurological diseases with associated sleep symptomatology. In this paper we first review the current methods to measure the integrity of the hypocretin system in human patients. The most widely used technique entails the measurement of hypocretin-1 in lumbar cerebrospinal fluid. In addition, hypocretin levels can be measured in ventricular cerebrospinal fluid and brain tissue extract. Finally, in post-mortem hypothalamic material, the number of hypocretin neurons can be precisely quantified. In the second part of this paper we describe the various neurological disorders in which hypocretin defects have been reported. These include neurodegenerative, neuromuscular and immune-mediated diseases, as well as traumatic brain injury. We conclude with a discussion of the functional relevance of partial hypocretin defects, and the various pathophysiological mechanisms that can lead to such defects.