Published in

Elsevier, Carbohydrate Research, 12(344), p. 1550-1557

DOI: 10.1016/j.carres.2009.06.010

Links

Tools

Export citation

Search in Google Scholar

Automated measurement of permethylated serum N-glycans by MALDI-linear ion trap mass spectrometry.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The use of N-glycan mass spectrometry for clinical diagnostics requires the development of robust high-throughput profiling methods. Still, structural assignment of glycans requires additional information such as MS(2) fragmentation or exoglycosidase digestions. We present a setting which combines a MALDI ionization source with a linear ion trap analyzer. This instrumentation allows automated measurement of samples thanks to the crystal positioning system, combined with MS(n) sequencing options. 2,5-Dihydroxybenzoic acid, commonly used for the analysis of glycans, failed to produce the required reproducibility due to its non-homogeneous crystallization properties. In contrast, alpha-cyano-4-hydroxycinnamic acid provided a homogeneous crystallization pattern and reproducibility of the measurements. Using serum N-glycans as a test sample, we focused on the automation of data collection by optimizing the instrument settings. Glycan structures were confirmed by MS(2) analysis. Although sample processing still needs optimization, this method provides a reproducible and high-throughput approach for measurement of N-glycans using a MALDI-linear ion trap instrument.