Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 32(110), p. 13008-13013, 2013

DOI: 10.1073/pnas.1305563110

Links

Tools

Export citation

Search in Google Scholar

Importance of lipid-pore loop interface for potassium channel structure and function

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Potassium (i.e., K + ) channels allow for the controlled and selective passage of potassium ions across the plasma membrane via a conserved pore domain. In voltage-gated K + channels, gating is the result of the coordinated action of two coupled gates: an activation gate at the intracellular entrance of the pore and an inactivation gate at the selectivity filter. By using solid-state NMR structural studies, in combination with electrophysiological experiments and molecular dynamics simulations, we show that the turret region connecting the outer transmembrane helix (transmembrane helix 1) and the pore helix behind the selectivity filter contributes to K + channel inactivation and exhibits a remarkable structural plasticity that correlates to K + channel inactivation. The transmembrane helix 1 unwinds when the K + channel enters the inactivated state and rewinds during the transition to the closed state. In addition to well-characterized changes at the K + ion coordination sites, this process is accompanied by conformational changes within the turret region and the pore helix. Further spectroscopic and computational results show that the same channel domain is critically involved in establishing functional contacts between pore domain and the cellular membrane. Taken together, our results suggest that the interaction between the K + channel turret region and the lipid bilayer exerts an important influence on the selective passage of potassium ions via the K + channel pore.