Published in

American Meteorological Society, Journal of Climate, 11(22), p. 3047-3078, 2009

DOI: 10.1175/2008jcli2827.1

Links

Tools

Export citation

Search in Google Scholar

Projected Changes to the Southern Hemisphere Ocean and Sea Ice in the IPCC AR4 Climate Models

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract Fidelity and projected changes in the climate models, used for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), are assessed with regard to the Southern Hemisphere extratropical ocean and sea ice systems. While individual models span different physical parameterizations and resolutions, a major component of intermodel variability results from surface wind differences. Projected changes to the surface wind field are also central in modifying future extratropical circulation and internal properties. A robust southward shift of the circumpolar current and subtropical gyres is projected, with a strong spinup of the Atlantic gyre. An associated increase in the core strength of the circumpolar circulation is evident; however, this does not translate into robust increases in Drake Passage transport. While an overarching oceanic warming is projected, the circulation-driven poleward shift of the temperature field explains much of the midlatitude warming pattern. The effect of this shift is less clear for salinity, where, instead, surface freshwater forcing dominates. Surface warming and high-latitude freshwater increases drive intensified stratification, and a shoaling and southward shift of the deep mixed layers. Despite large intermodel differences, there is also a robust weakening in bottom water formation and its northward outflow. At the same time the wind intensification invigorates the upwelling of deep water, transporting warm, salty water southward and upward, with major implications for sequestration and outgassing of CO2. A robust decrease is projected for both the sea ice concentration and the seasonal cycling of ice volume, potentially altering the salt and heat budget at high latitudes.