Published in

Nature Research, Nature, 7478(504), p. 126-130, 2013

DOI: 10.1038/nature12683

Links

Tools

Export citation

Search in Google Scholar

Late-twentieth-century emergence of the El Niño propagation asymmetry and future projections

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The El Nino/Southern Oscillation (ENSO) is the Earth's most prominent source of interannual climate variability, exerting profound worldwide effects(1-7). Despite decades of research, its behaviour continues to challenge scientists. In the eastern equatorial Pacific Ocean, the anomalously cool sea surface temperatures (SSTs) found during La Nina events and the warm waters of modest El Nino events both propagate westwards, as in the seasonal cycle(7). In contrast, SST anomalies propagate eastwards during extreme El Nino events, prominently in the post-1976 period(7-10), spurring unusual weather events worldwide with costly consequences(3-6,11). The cause of this propagation asymmetry is currently unknown(10). Here we trace the cause of the asymmetry to the variations in upper ocean currents in the equatorial Pacific, whereby the westward-flowing currents are enhanced during La Nina events but reversed during extreme El Nino events. Our results highlight that propagation asymmetry is favoured when the westward mean equatorial currents weaken, as is projected to be the case under global warming(12-14). By analysing past and future climate simulations of an ensemble of models with more realistic propagation, we find a doubling in the occurrences of El Nino events that feature prominent eastward propagation characteristics in a warmer world. Our analysis thus suggests that more frequent emergence of propagation asymmetry will be an indication of the Earth's warming climate.