Published in

American Institute of Physics, Journal of Applied Physics, 22(114), p. 224109

DOI: 10.1063/1.4846817

Links

Tools

Export citation

Search in Google Scholar

Enhanced ferroelectric and dielectric properties of (111)-oriented highly cation-ordered PbSc0.5Ta0.5O3 thin films

Journal article published in 2013 by Anuj Chopra, Balaji I. Birajdar, Yunseok Kim, Marin Alexe ORCID, Dietrich Hesse
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Cation-ordered (111)-oriented epitaxial PbSc0.5Ta0.5O3 (PST) thin films were deposited by pulsed laser deposition on SrRuO3-electroded SrTiO3 (111) substrates at three different temperatures of 525 °C, 550 °C, and 575 °C. All the films were well crystalline and (111)-oriented at all the three growth temperatures; however, the films deposited at the temperatures other than 550 °C exhibited the presence of a pyrochlore phase. X-ray diffraction analysis and transmission electron microscopy measurements revealed that the films were epitaxial and highly cation-ordered. In comparison to (001)-oriented PST films, (111)-oriented films on SrRuO3/SrTiO3 (111) exhibited enhanced ferroelectric and dielectric properties with a broad size distribution of cation-ordered domains (5–100 nm). At a measurement temperature of 100 K, the remnant polarization of PST (111) films is almost √3 times larger than the remnant polarization observed for (001)-oriented PST films, which is attributed to the (111) orientation of the films, as the spontaneous polarization in PST lies close to the [111] direction. The observed dielectric constant and loss at 1 kHz were around 1145 and 0.11, respectively. The dielectric constant is thus almost three times higher than for previously reported (001)-oriented PST thin films, most probably due to the enhancement in cation-ordering.