Published in

American Chemical Society, Nano Letters, 8(14), p. 4785-4791, 2014

DOI: 10.1021/nl501962c

Links

Tools

Export citation

Search in Google Scholar

Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Semiconductor heterostructures form the cornerstone of many electronic and optoelectronic devices and are traditionally fabricated using epitaxial growth techniques. More recently, heterostructures have also been obtained by vertical stacking of two-dimensional crystals, such as graphene and related two- dimensional materials. These layered designer materials are held together by van der Waals forces and contain atomically sharp interfaces. Here, we report on a type- II van der Waals heterojunction made of molybdenum disulfide and tungsten diselenide monolayers. The junction is electrically tunable and under appropriate gate bias, an atomically thin diode is realized. Upon optical illumination, charge transfer occurs across the planar interface and the device exhibits a photovoltaic effect. Advances in large-scale production of two-dimensional crystals could thus lead to a new photovoltaic solar technology. ; Comment: 26 pages, 14 figures, Nano Letters 2014