Published in

IOP Publishing, Nanotechnology, 47(24), p. 475502

DOI: 10.1088/0957-4484/24/47/475502

Links

Tools

Export citation

Search in Google Scholar

Rice-straw-like structure of silicon nanowire arrays for a hydrogen gas sensor

Journal article published in 2013 by Ying-Kan Yang, Hsien-Lung Cheng, B.-R.;Yang Y-K.;Cheng H-L. Huang
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A rice-straw-like silicon nanowire (SiNW) array was developed for hydrogen gas sensing applications. The straight-aligned SiNW array sensor was first fabricated by the metal-assisted electroless etching (MAEE) technique. Rice-straw-like SiNW arrays were formed using a repeated MAEE technique. Hydrogen sensing characteristics were measured for gas concentrations from 20 to 1000 ppm at room temperature. The rice-straw-like SiNW-array-based hydrogen gas sensor performed with low noise and a high response (232.5%) for 1000 ppm hydrogen gas. It was found that the rice-straw-like SiNW-array hydrogen gas sensor had a much better response (approximately 2.5 times) than the straight-aligned SiNW-array sensor. The rice-straw-like SiNW-array structure effectively increased the surface area and the concentration of silicon oxide, which provided additional binding sites for gas molecules. Thus, the rice-straw-like SiNW-array-based hydrogen gas sensor possessed good sensing properties and has the potential for mass production of sensing devices. ? 2013 IOP Publishing Ltd.