Published in

Journal of Biomedical Materials Research, 1(71A), p. 81-89

DOI: 10.1002/jbm.a.30126

Links

Tools

Export citation

Search in Google Scholar

Architecture control of three-dimensional polymeric scaffolds for soft tissue engineering. I. Establishment and validation of numerical models

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

One of the most important functions of artificial three-dimensional (3D) polymeric scaffolds is to serve as a physical support to provide tissues with an appropriate architecture for in vitro cell culture as well as in vivo tissue regeneration. The production of three-dimensional (3D) polymeric scaffolds with tailored macroporous architecture is thus a crucial step in promoting controlled vascularization and tissue growth within host environments. In this study, 3D poly(lactic-co-glycolic acid) (PLGA) scaffolds were manufactured by a thermally induced phase-separation (TIPS) technique. By controlling the quenching strategy, 3D interconnected PLGA scaffolds with tunable pore size and alignment were obtained and characterized with the use of scan ning electron microscopy (SEM). A series of numerical heat-transfer models were established in an effort to describe the cooling process within the PLGA freezing regime. Among them, a two-dimensional (2D) solidification model has proved to be the most successful in describing the quenching of the polymer solution and has the potential to be used to infer the various 3D macroporous architectures created from different quenching conditions. (C) 2004 Wiley Periodicals, Inc.