Dissemin is shutting down on January 1st, 2025

Published in

American Physical Society, Physical Review Letters, 8(103), 2009

DOI: 10.1103/physrevlett.103.080405

Links

Tools

Export citation

Search in Google Scholar

Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this Letter, we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4 Planck's constant k, deflecting the atomic wave packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labeled an interferometer, intrinsically insensitive to the main systematics and applicable to all kinds of atomic sources. This splitting scheme can be extended to 4N Planck's constant k momentum transfer by a multipulse sequence and is implemented on a 8 Planck's constant k interferometer. We demonstrate the area enhancement by measuring inertial forces.