Published in

American Chemical Society, Analytical Chemistry, 23(70), p. 5010-5018, 1998

DOI: 10.1021/ac980473c

Links

Tools

Export citation

Search in Google Scholar

RP-HPLC binding domains of proteins

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Procedures have been developed to identify the chromatographic binding domains of horse heart cytochrome c (Cyt c) and bovine growth hormone (bGH) during their interaction with reversed-phase sorbent materials. The procedure involves adsorption of the protein solute to the chromatographic sorbent, followed by proteolytic cleavage. Comparison of the proteolytic map obtained for Cyt c and bGH in free solution with the corresponding map obtained when these proteins are adsorbed to the chromatographic sorbent revealed significant differences in the digestion pattern. Following characterization of the peptides generated in both maps, the results indicated that specific regions on the surface of both Cyt c and bGH are inaccessible to tryptic cleavage when adsorbed to the hydrophobic surface of both a C-4 and a C-18 sorbent. Based on the assumption that the region of the protein surface that is in contact with the sorbent remains intact and bound to the sorbent during the digestion step, while the protein surface that is exposed to the solvent is accessible to proteolysis, the regions that were inaccessible to tryptic digestion were found to correspond to hydrophobic domains on the protein surface. These results also suggest that the three-dimensional structures of these proteins remain largely intact upon adsorption to the hydrophobic surface.