Links

Tools

Export citation

Search in Google Scholar

Experiment and numerical analysis of the residual stresses in underfill resins for flip chip package applications

Journal article published in 2005 by Man-Lung Sham, Jang-Kyo Kim ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Polymeric encapsulant is widely used to protect the integrated circuit chips and thus to enhance the reliability of electronic packages. Residual stresses are introduced in the plastic package when the polymer is cooled from the curing temperature to ambient, from which many reliability issues arise, including warpage of the package, premature interfacial failure, and degraded interconnections. Bimaterial strip bending experiment has been employed successfully to monitor the evolution of the residual stresses in underfrill resins for flip chip applications. A numerical analysis is developed to predict the residual stresses, which agree well with the experimental measurements. The changes of material properties, such as flexural modulus and coefficient of thermal expansion, of the resins with temperature are taken into account in the finite element analysis.