Published in

Springer Verlag, Waste and Biomass Valorization, 2(5), p. 175-180

DOI: 10.1007/s12649-013-9244-9

Links

Tools

Export citation

Search in Google Scholar

Catalytic steam gasification of biomass for a sustainable hydrogen future: influence of catalyst composition

Journal article published in 2013 by Chunfei Wu ORCID, Zichun Wang, Leizhi Wang, Jun Huang ORCID, Pt Williams
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hydrogen is regarded as a clean energy for fuelling the future. Hydrogen will be the energy carrier from other resources such as hydropower, wind, solar and biomass. Producing hydrogen from gasification of biomass wastes, particularly in the presence of steam, represents a promising route to produce this clean and CO2-neutral fuel. The steam pyrolysis–gasification of biomass (wood sawdust) was carried out with various nickel-based catalysts for hydrogen production in a two-stage fixed bed reaction system. The wood sawdust was pyrolysed in the first reactor and the derived products were gasified in the second reactor in the presence of the catalyst and steam. The synthesised Ni–Ca–Al and Ni–Zn–Al catalysts were prepared by co-precipitation method with different Ni loadings of 20 mol% and various Zn/Al or Ca/Al ratios, which were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and temperature-programmed oxidation (TPO). The results showed that the Ni/Zn–Al (1:9) catalyst resulted in higher hydrogen production (23.9 mmol H2 g−1 biomass) compared with the Ni/Ca–Al (1:9) catalyst (12.7 23.9 mmol H2 g−1 biomass) and in addition, the increase of Ca or Zn content in the catalyst slightly increased the hydrogen production. The TPO results showed that the catalyst suffered negligible coke deposition from the catalytic steam pyrolysis/gasification of wood sawdust. Additionally, Na2CO3 basic solution was also found to produce a catalyst with better performance and lower coke deposition, compared with NH4OH catalyst preparation agent, as observed by TPO, SEM and TEM analysis.