Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Hazardous Materials, (243), p. 250-256

DOI: 10.1016/j.jhazmat.2012.10.023

Links

Tools

Export citation

Search in Google Scholar

Metabolism of diclofenac in plants – Hydroxylation is followed by glucose conjugation

Journal article published in 2012 by Christian Huber, Bernadett Bartha, Peter Schröder ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pharmaceuticals from human or veterinary medication form a new class of micropollutants that poses a serious threat to our aquatic environment and its organisms. The intensively used nonsteroidal anti-inflammatory drug diclofenac is found in the environment worldwide due to its poor elimination during waste water treatment processes. In order to test phytoremediation as a tool for the removal of this drug from waste water, the uptake of the compound into plant tissues and its metabolic pathway was addressed using Hordeum vulgare (barley) and a hairy root cell culture of Armoracia rusticana (horse radish) as model species. Diclofenac is taken up by plants and undergoes rapid metabolization; already after 3h of exposure the drug and its metabolites could be detected in the plant tissues. Similar to its fate in mammalian cells the drug is activated in a phase I reaction resulting in the hydroxylated metabolite 4′OH-diclofenac which is conjugated subsequently in phase II to a glucopyranoside, a typical plant specific metabolite. After exposure to 10 and 100μM diclofenac a concentration dependent formation of the hydroxylated metabolite was observed, while the formation of the phase II metabolite OH-diclofenac glucopyranoside was not positively affected by the higher concentration. To our knowledge this is the first time these two human painkiller metabolites are shown to occur in plant tissues.