Published in

Elsevier, Cell, 1(147), p. 81-94, 2011

DOI: 10.1016/j.cell.2011.08.033

Links

Tools

Export citation

Search in Google Scholar

The Lin28/let-7 axis regulates glucose metabolism

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by blocking let-7 biogenesis. In studies of the Lin28/let-7 pathway, we discovered unexpected roles in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promoted an insulin-sensitized state that resisted high fat diet-induced diabetes, whereas muscle-specific loss of Lin28a and overexpression of let-7 resulted in insulin resistance and impaired glucose tolerance. These phenomena occurred in part through let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. The mTOR inhibitor rapamycin abrogated the enhanced glucose uptake and insulin-sensitivity conferred by Lin28a in vitro and in vivo. In addition, we found that let-7 targets were enriched for genes that contain SNPs associated with type 2 diabetes and fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism.