Published in

2013 IEEE International Symposium on Industrial Electronics

DOI: 10.1109/isie.2013.6563803

Links

Tools

Export citation

Search in Google Scholar

Distributed reactive power control methods to avoid voltage rise in grid-connected photovoltaic power generation systems

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A high density of grid-connected photovoltaic (PV) power generation systems is expected to occur in urban areas. The connection of distributed generation (DG) may cause serious problems in the distribution system such as voltage rise. Several voltage control strategies exist to avoid the over-voltage at the power grid. In particular, reactive power control methods have been proved to successfully bring DGs voltages within the admissible voltage range without reducing the production of active power. In addition, the possible use of communication infrastructure to link DGs opens up the development of new reactive power control methods where control actions at each DG may be decided using both local and global information. This paper presents a comparative study of existing and novel distributed reactive power control methods that have been designed exploiting the information exchange facility provided by a communication infrastructure. ; Peer Reviewed ; Postprint (published version)