Dissemin is shutting down on January 1st, 2025

Published in

Springer, Space Science Reviews, 1-4(170), p. 583-640, 2012

DOI: 10.1007/s11214-012-9921-1

Mars Science Laboratory, p. 583-640

DOI: 10.1007/978-1-4614-6339-9_17

Links

Tools

Export citation

Search in Google Scholar

REMS: the environmental sensor suite for the Mars Science Laboratory rover

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Rover Environmental Monitoring Station (REMS) will investigate environ- mental factors directly tied to current habitability at the Martian surface during the Mars Sci- ence Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Ac- cordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observa- tions will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures ; Peer Reviewed ; Postprint (published version)