Published in

American Physical Society, Physical review B, 12(77), 2008

DOI: 10.1103/physrevb.77.121402

Links

Tools

Export citation

Search in Google Scholar

Ultrafast electron-phonon decoupling in graphite

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report the ultrafast dynamics of the 47.4 THz coherent phonons of graphite interacting with a photoinduced non-equilibrium electron-hole plasma. Unlike conventional materials, upon photoexcitation the phonon frequency of graphite upshifts, and within a few picoseconds relaxes to the stationary value. Our first-principles density functional calculations demonstrate that the phonon stiffening stems from the light-induced decoupling of the non-adiabatic electron-phonon interaction by creating the non-equilibrium electron-hole plasma. Time-resolved vibrational spectroscopy provides a window on the ultrafast non-equilibrium electron dynamics.