Published in

American Astronomical Society, Astrophysical Journal Letters, 2(724), p. L194-L198, 2010

DOI: 10.1088/2041-8205/724/2/l194

Links

Tools

Export citation

Search in Google Scholar

Periodic spectral line asymmetries in solar coronal structures from slow magnetoacoustic waves

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Recent spectral observations of upward moving quasi-periodic intensity perturbations in solar coronal structures have shown evidence of periodic line asymmetries near their footpoints. These observations challenge the established interpretation of the intensity perturbations in terms of propagating slow magnetoacoustic waves. We show that slow waves inherently have a bias toward enhancement of emission in the blue wing of the emission line due to in-phase behavior of velocity and density perturbations. We demonstrate that slow waves cause line asymmetries when the emission line is averaged over an oscillation period or when a quasi-static plasma component in the line of sight is included. Therefore, we conclude that slow magnetoacoustic waves remain a valid explanation for the observed quasi-periodic intensity perturbations.