Published in

Nature Research, Nature Materials, 9(9), p. 725-729, 2010

DOI: 10.1038/nmat2828

Links

Tools

Export citation

Search in Google Scholar

The initialization and manipulation of quantum information stored in silicon by bismuth dopants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A prerequisite for exploiting spins for quantum data storage and processing is long spin coherence times. Phosphorus dopants in silicon (Si:P) have been favoured1, 2, 3, 4, 5, 6, 7, 8, 9, 10 as hosts for such spins because of measured electron spin coherence times (T2) longer than any other electron spin in the solid state: 14 ms at 7 K with isotopically purified silicon11. Heavier impurities such as bismuth in silicon (Si:Bi) could be used in conjunction with Si:P for quantum information proposals that require two separately addressable spin species12, 13, 14, 15. However, the question of whether the incorporation of the much less soluble Bi into Si leads to defect species that destroy coherence has not been addressed. Here we show that schemes involving Si:Bi are indeed feasible as the electron spin coherence time T2 is at least as long as for Si:P with non-isotopically purified silicon. We polarized the Si:Bi electrons and hyperpolarized the I=9/2 nuclear spin of 209Bi, manipulating both with pulsed magnetic resonance. The larger nuclear spin means that a Si:Bi dopant provides a 20-dimensional Hilbert space rather than the four-dimensional Hilbert space of an I=1/2 Si:P dopant.