Published in

American Institute of Physics, Journal of Applied Physics, 12(81), p. 8040-8046, 1997

DOI: 10.1063/1.365409

Links

Tools

Export citation

Search in Google Scholar

Structural investigation of self-aligned silicidation on separation by implantation oxygen

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Self-aligned silicidation is a well-known process to reduce the source, drain, and gate parasitic resistances of submicron metal-oxide-semiconductor devices. This process is particularly useful for devices built on very thin Si layer (similar to 1000 Angstrom or less) on insulators. Since the amount of Si available for silicidation is limited by the thickness of the Si layer, once the Si in the source and drain region is fully consumed during silicidation, excessive silicide formation could lead to void formation near the silicide/silicon interface beneath the oxide edge. In this article, we study the effects of different metals (Ti, Ni, Co, and Co/Ti bilayer) with varying thickness on the formation of voids. A change in the moving species during lateral silicide formation was found to be the likely cause for the voids, even if the metals are the moving species during silicidation in the thin film case. (C) 1997 American Institute of Physics.