Dissemin is shutting down on January 1st, 2025

Published in

Ecological Society of America, Ecology, 6(88), p. 1365-1378

DOI: 10.1890/06-0387

Links

Tools

Export citation

Search in Google Scholar

Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment

Journal article published in 2007 by Byron C. Crump ORCID, Heather E. Adams, John E. Hobbie, George W. Kling ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Author Posting. © Ecological Society of America, 2007. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 88 (2007): 1365–1378, doi:10.1890/06-0387 ; Bacterioplankton community composition was compared across 10 lakes and 14 streams within the catchment of Toolik Lake, a tundra lake in Arctic Alaska, during seven surveys conducted over three years using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified rDNA. Bacterioplankton communities in streams draining tundra were very different than those in streams draining lakes. Communities in streams draining lakes were similar to communities in lakes. In a connected series of lakes and streams, the stream communities changed with distance from the upstream lake and with changes in water chemistry, suggesting inoculation and dilution with bacteria from soil waters or hyporheic zones. In the same system, lakes shared similar bacterioplankton communities (78% similar) that shifted gradually down the catchment. In contrast, unconnected lakes contained somewhat different communities (67% similar). We found evidence that dispersal influences bacterioplankton communities via advection and dilution (mass effects) in streams, and via inoculation and subsequent growth in lakes. The spatial pattern of bacterioplankton community composition was strongly influenced by interactions among soil water, stream, and lake environments. Our results reveal large differences in lake-specific and stream-specific bacterial community composition over restricted spatial scales (