American Physical Society, Physical Review A, 5(89)
DOI: 10.1103/physreva.89.050101
Full text: Download
We use general concepts of statistical mechanics to compute the quantum frictional force on an atom moving at constant velocity above a planar surface. We derive the zero-temperature frictional force using a non-equilibrium fluctuation-dissipation relation, and show that in the large-time, steady-state regime quantum friction scales as the cubic power of the atom's velocity. We also discuss how approaches based on Wigner-Weisskopf and quantum regression approximations fail to predict the correct steady-state zero temperature frictional force, mainly due to the low frequency nature of quantum friction. ; Comment: 5+1 pages, 1 figure