Published in

American Institute of Physics, Journal of Applied Physics, 8(104), p. 083505

DOI: 10.1063/1.2996299

Links

Tools

Export citation

Search in Google Scholar

Light emission properties and mechanism of low-temperature prepared amorphous SiNx films. II: Defect states electroluminescence

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

In this paper, we present a room-temperature electroluminescence (EL) study of amorphous nonstoichiometric silicon nitride ( SiN X) films. The light-emitting device is formed by an ITO / SiN X/p -type silicon structure. EL shows a yellowish broad emission spectrum with a power efficiency of 10-6 . The EL peak energy depends on the bias voltage rather than on the silicon content in SiN X . By fitting the current-voltage characteristic with existing models, we found that under high voltages the Poole–Frenkel hole conduction is the main carrier transport mechanism in these devices. Injected electrons are captured by silicon dangling bonds ( K center) and recombine with holes, which are localized in valence band tail states. Unbalanced hole and electron injection and nonradiative recombination are the main constraints on the EL efficiency of SiN X .