Published in

Springer, Bioprocess and Biosystems Engineering, 3(27), p. 163-174, 2005

DOI: 10.1007/s00449-004-0395-8

Links

Tools

Export citation

Search in Google Scholar

Carbon mass balance methodology to characterize the growth of pigmented marine bacteria under conditions of light cycling

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A carbon mass balance methodology employing minimal measurements was applied to heterotrophic and photoheterotrophic marine bacteria grown under constant dilution and exposed to 12-h intervals of light or darkness. Carbon mass balance calculations using measurements taken every 3 h closed to within 93-103% using dissolved organic carbon, biomass carbon and CO2 production data only, indicating that background interference from dissolved inorganic carbon variations in the amended seawater medium was not significant. Neither strain was observed to sustain a net CO2 fixation using paramagnetic measurement of oxygen uptake rates (OUR), indicating a need for more sensitive on-line measurement techniques for OUR. Photoheterotrophic growth demonstrated lower carbon-mole biomass yields (0.41+/-0.026 vs. 0.64+/-0.013 mol mol(-1)) despite higher specific glucose uptake rates (0.025 vs. 0.02 mol mol(-1) h(-1)), suggesting that bioreactor-based study of marine bacteria can present growth modes that are different from those encountered in the marine environment.