Published in

Wiley, Journal of Comparative Neurology, 4(447), p. 323-330, 2002

DOI: 10.1002/cne.10218

Links

Tools

Export citation

Search in Google Scholar

Distribution of two splice variants of the glutamate transporter GLT-1 in the developing rat retina

Journal article published in 2002 by Peter Reye, Robert Sullivan ORCID, Dv Pow, Sanford L. Palay
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The distributions of a carboxyl terminal splice variant of the glutamate transporter GLT-1, referred to as GLT-1B, and the carboxyl terminus of the originally described variant of GLT-1, referred to hereafter as GLT-1alpha, were examined using specific antisera. GLT-1B was present in the retina at very early developmental stages. Labelling was demonstrable at embryonic day 14, and strong labelling was evident by embryonic day 18. Such labelling was initially restricted to populations of cone photoreceptors, the processes of which extended through the entire thickness of the retina and appeared to make contact with the retinal ganglion cells. During postnatal development the GLT-1B-positive photoreceptor processes retracted to form the outer plexiform layer, and around postnatal day 7, GLT-1B-immunoreactive bipolar cells appeared. The pattern of labelling of bipolar cell processes within the inner plexiform layer changed during postnatal development. Two strata of strongly immunoreactive terminals were initially evident in the inner plexiform layer, but by adulthood these two bands were no longer evident and labelling was restricted to the somata and processes (but not synaptic terminals) of the bipolar cells, as well as the somata, processes, and terminals of cone photoreceptors. By contrast, GLT-1alpha appeared late in postnatal development and was restricted mainly to a population of amacrine cells, although transient labelling was also associated with punctate elements in the outer plexiform layer, which may represent photoreceptor terminals, (C) 2002 Wiley-Liss, Inc.