Published in

Elsevier, Materials Letters, (78), p. 154-158

DOI: 10.1016/j.matlet.2012.03.052

Links

Tools

Export citation

Search in Google Scholar

Anisotropic tissue elasticity in human lumbar vertebra, by means of a coupled ultrasound-micromechanics approach

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The extremely fi ne structure of vertebral cortex challenges reliable determination of the tissue's anisotropic elasticity, which is important for the spine's load carrying patterns often causing pain in patients. As a potential remedy, we here propose a combined experimental (ultrasonic) and modeling (micromechanics) approach. Longitudinalacousticwavesaresentinlongitudinal(superior -inferior,axial)aswellastransverse(circumferential) direction through millimeter-sized samples containing thi s vertebral cortex, and corr esponding wave velocities agree very well with recently identi fi ed ‘ universal ’ compositional and acoustic characteristics (J Theor Biol 287:115,2011),whicharevalidforalargedatabasecomprisingdifferent bonesfromdifferent speciesanddifferent organs. This provides evidence that the ‘ universal ’ organization patterns inherent to all the bone tissues of the aforementioned data base also hold for vertebral bone. Con sequently, an experimentally validated model covering the mechanical effects of this organization patterns (J Theor Biol 244:597, 2007, J Theor Biol 260:230, 2009) gives access to the complete elasticity tensor of human lumbar ve rtebral bone tissue, as a valuable input for structural analyses aiming at patient-speci fi cfractureriskassessm ent, e.g. based on the Finite Element Method. ; Peer Reviewed ; Postprint (published version)