Published in

Future Medicine, Future Neurology, 4(9), p. 487-511, 2014

DOI: 10.2217/fnl.14.33

Links

Tools

Export citation

Search in Google Scholar

Current developments in MRI for assessing rodent models of multiple sclerosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT: MRI is a key radiological imaging technique that plays an important role in the diagnosis and characterization of heterogeneous multiple sclerosis (MS) lesions. Various MRI methodologies such as conventional T 1/T 2 contrast, contrast agent enhancement, diffusion-weighted imaging, magnetization transfer imaging and susceptibility weighted imaging have been developed to determine the severity of MS pathology, including demyelination/remyelination and brain connectivity impairment from axonal loss. The broad spectrum of MS pathology manifests in diverse patient MRI presentations and affects the accuracy of patient diagnosis. To study specific pathological aspects of the disease, rodent models such as experimental autoimmune encephalomyelitis, virus-induced and toxin-induced demyelination have been developed. This review aims to present key developments in MRI methodology for better characterization of rodent models of MS.