Dissemin is shutting down on January 1st, 2025

Published in

MyJove Corporation, Journal of Visualized Experiments, 105, 2015

DOI: 10.3791/53133-v

MyJove Corporation, Journal of Visualized Experiments, 105

DOI: 10.3791/53133

Links

Tools

Export citation

Search in Google Scholar

Chronic Thromboembolic Pulmonary Hypertension and Assessment of Right Ventricular Function in the Piglet

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

An original piglet model of Chronic Thromboembolic Pulmonary Hypertension (CTEPH) associated with chronic Right Ventricular (RV) dysfunction is described. Pulmonary Hypertension (PH) was induced in 3-week-old piglets by a progressive obstruction of the pulmonary vascular bed. A ligation of the left Pulmonary Artery (PA) was performed first through a mini-thoracotomy. Second, weekly embolizations of the right lower pulmonary lobe were done under fluoroscopic guidance with n-butyl-2-cyanoacrylate during 5 weeks. Mean Pulmonary Arterial Pressure (mPAP) measured by ritght heart catheterism, increased progressively, as well as Right Atrial pressure and Pulmonary Vascular Resistances (PVR) after 5 weeks compared to sham animals. Right Ventricular (RV) structural and functional remodeling were assessed by transthoracic echocardiography (RV diameters, RV wall thickness, RV systolic function). RV elastance and RV-pulmonary coupling were assessed by Pressure-Volume Loops (PVL) analysis with conductance method. Histologic study of the lung and the right ventricle were also performed. Molecular analyses on RV fresh tissues could be performed through repeated transcutaneous endomyocardial biopsies. Pulmonary microvascular disease in obstructed and unobstructed territories was studied from lung biopsies using molecular analyses and pathology. Furthermore, the reliability and the reproducibility was associated with a range of PH severity in animals. Most aspects of the human CTEPH disease were reproduced in this model, which allows new perspectives for the understanding of the underlying mechanisms (mitochondria, inflammation) and new therapeutic approaches (targeted, cellular or gene therapies) of the overloaded right ventricle but also pulmonary microvascular disease.