Published in

World Scientific Publishing, International Journal of Modern Physics B, 02n03(14), p. 167-180

DOI: 10.1142/s0217979200000169

Links

Tools

Export citation

Search in Google Scholar

Ultra-thin film deposition and characterisation of 10nm amorphous carbon layers for applications in magnetic storage devices

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The paper will present an overview of our latest results using various ultra-thin film amorphous carbon deposition techniques, and focus on first to grow studies, nano-characterisation of the electrical, mechanical and barrier properties associated with films grown on various substrate types applied to the magnetic recording industry. Although some of the characterisation is carried out on 10nm coatings, the nanomechanical measurements are performed on samples with thickness values between 30nm to 200nm. This overview of our work deals with PECVD deposition techniques and examines ultra-thin film growth on Si and Al 2 O 3: TiC substrates. Some results are presented on the functional benefits of doping a-C:H films with Silicon and Nitrogen. All the work is related to the ability to produce effective 3nm to 10nm overcoat layers for new magnetic recording applications.