Published in

Wiley, Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 4(293), p. 658-670, 2010

DOI: 10.1002/ar.21136

Links

Tools

Export citation

Search in Google Scholar

Mammalian Limb Loading and Chondral Modeling During Ontogeny

Journal article published in 2010 by Ashley S. Hammond ORCID, Jie Ning, Carol V. Ward, Matthew J. Ravosa
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The adaptive growth response of cartilage, or chondral modeling, can result in changes in joint and limb proportions during ontogeny and ultimately contribute to the adult form. Despite Hamrick's (1999) reevaluation of the mechanisms of chondral modeling, the process of chondral modeling remains poorly studied in animal models. Here, we characterize the macro- and microanatomical responses of the femoral growth plate, articular cartilage, and bone in 15 juvenile Sus scrofa domestica subjected to different locomotor activity patterns. The exercised animals exhibit thinner cartilage zones, greater cellularity and larger proliferative chondrocyte areas in the growth plate, as well as larger femoral dimensions and a more elongate femoral head compared with sedentary controls. In general, the growth plate demonstrates greater adaptive changes than articular cartilage. Moreover, chondrocyte hypertrophy and proliferation were found to be responsive to locomotor loading and thus more important factors in chondral modeling than the extracellular matrix variables that were examined herein. In sum, the underlying mechanisms of adaptive chondrogenesis and bone plasticity are key to informing evolutionary and translational studies regarding determinants of variation in joint form and function. Given the disparity between the predictions of chondral modeling theory and our experimental findings, this suggests a need for further evaluation of chondral modeling responses during ontogeny.