Published in

Springer Verlag, Metabolomics, 2(9), p. 379-391

DOI: 10.1007/s11306-012-0455-z

Links

Tools

Export citation

Search in Google Scholar

Disclosure of a putative biosignature for respiratory chain disorders through a metabolomics approach

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The diagnosis of respiratory chain deficiencies (RCDs) is complicated and the need for a diagnostic biomarker or biosignature has been widely expressed. In this study, the metabolic profile of a selected group of 29 RCD patients,with a predominantly muscle disease phenotype, and 22 controls were investigated using targeted and untargeted analyses of three sub-sections of the human metabolome, including urinary organic acids and amino acids [measured by gas chromatography–mass spectrometry (GC–MS)], as well as acylcarnitines (measured by electrospray ionization tandem MS). Although MS technologies are highly sensitive and selective, they are restrictive by being applied only to subsections of the metabolome; an untargeted nuclear magnetic resonance (NMR) spectroscopy approach was therefore also included. After data reduction and pre-treatment, a biosignature comprising six organic acids (lactic, succinic, 2-hydroxyglutaric, 3-hydroxyisobutyric, 3-hydroxyisovaleric and 3-hydroxy-3-methylglutaric acids), six amino acids (alanine, glycine, glutamic acid, serine, tyrosine and a-aminoadipic acid) and creatine,was constructed fromuni- and multivariate statistical analyses and verified by cross-validation. The results presented here provide the first proof-of-concept that the metabolomics approach is capable of defining a biosignature for RCDs. We postulate that the composite of organic acids & amino acids[creatine[betaine[carnitines represents the basic biosignature for RCDs. Validated through a prospective study, this could offer an improved ability to assign individual patients to a group with defined RCD characteristics and improve case selection for biopsy procedures, especially in infants and children. ; http://www.springerlink.com/content/1573-3882/ ; The South African Department of Science and Technology, North-West University and S.W. Mason is a recipient of a Vrije Universiteit (VU) Amsterdam-National Research Foundation (NRF)- Desmond Tutu PhD Fellowship.