American Geophysical Union, Journal of Geophysical Research, (116), 2011
DOI: 10.1029/2010jd014788
Full text: Download
A measurement intensive was carried out in Barrow, Alaska, in spring 2009 as part of the Ocean-Atmosphere-Sea-Ice–Snowpack (OASIS) program. The central focus of this campaign was the role of halogen chemistry in the Arctic. A chemical ionization mass spectrometer (CIMS) performed in situ bromine oxide (BrO) measurements. In addition, a long path-differential optical absorption spectrometer (LP-DOAS) measured the average concentration of BrO along light paths of either 7.2 or 2.1 km. A comparison of the 1 min observations from both instruments is presented in this work. The two measurements were highly correlated and agreed within their uncertainties (R2 = 0.74, slope = 1.10, and intercept = −0.15 pptv). Better correlation was found (R2 = 0.85, slope = 1.04, and intercept = −0.11 pptv) for BrO observations at moderate wind speeds (>3 m s−1 and