Published in

Elsevier, Gene, 1-2(406), p. 69-78, 2007

DOI: 10.1016/j.gene.2007.06.011

Links

Tools

Export citation

Search in Google Scholar

Two distinct types of 6S RNA in Prochlorococcus.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Different forms of the 6S non-coding RNA (ncRNA) exist in enterobacteria and in B. subtilis but there is only limited information about this RNA from other groups of bacteria. Prochlorococcus is an oceanic, ecologically important, cyanobacterium. It possesses the most streamlined genome within the cyanobacterial phylum, lacking many regulatory proteins and mechanisms well-known from other bacteria. Here we show the accumulation of two distinct types of 6S RNA in Prochlorococcus MED4. One of these RNAs is transcribed from a specific promoter located 23 nucleotides downstream the terminal codon of the purK gene, whereas the longer transcript is produced by processing from a purK-6S RNA precursor. The expression of both 6S transcripts is under diel control, reaching maxima during the day and minima coinciding with the S- and G2-like phases which are typical for synchronized cultures of this prokaryote. Based on data from four closely related Prochlorococcus strains and 11 environmental sequences from the Sargasso Sea, a previously unknown structural element is predicted within the 6S RNA 5' domain by comparative computational analysis. The divergent expression in synchronized cultures and unusual structural domains that were detected based on metagenomic data sets indicate that 6S RNA is an extremely important global regulator in these marine cyanobacteria.