Published in

American Chemical Society, Journal of Physical Chemistry Letters, 22(5), p. 3953-3957, 2014

DOI: 10.1021/jz5020778

Links

Tools

Export citation

Search in Google Scholar

Some like it hot: the effect of sterols and hopanoids on lipid ordering at high temperature

Journal article published in 2014 by Bertrand Caron, Alan E. Mark ORCID, David Poger
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sterols and hopanoids have been suggested to reinforce membranes and protect against unfavorable environmental conditions. In particular, hopanoids are found in high concentrations in membranes of thermotolerant and thermophilic bacteria. However, the mechanism whereby sterols and hopanoids stabilize membranes at elevated temperatures is poorly understood. Here, the effect of temperature on the ordering of lipids in bilayers containing cholesterol or the hopanoids bacteriohopanetetrol and diplopterol was explored using molecular dynamics simulations. It is shown that cholesterol induces a high level of ordering over a wide range of temperatures. Bacteriohopanetetrol promotes order within the lipid tails but enhances fluid-like properties of the head groups at high temperatures. In contrast, diplopterol partitions in the midplane of the bilayer. This suggests that individual hopanoids fulfill distinct functions in membranes, with the ordering properties of bacteriohopanetetrol being particularly well suited to maintain the integrity of membranes at temperatures preferred by thermotolerant and thermophilic bacteria.