Published in

Elsevier, Surface and Coatings Technology, (228), p. 27-33

DOI: 10.1016/j.surfcoat.2013.03.048

Links

Tools

Export citation

Search in Google Scholar

A Pd-free activation method for electroless nickel deposition on copper

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, a Pd-free activation method for electroless nickel deposition on copper via an immersion nickel technique was developed. In the very solution we studied, high concentration of thiourea resulted in a negative shift of the steady potential of copper, making it possible to realize immersion nickel. The obtained immersion nickel layers were characterized by scanning electron microscopy, energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy, demonstrating a co-deposition of sulfur in the nickel layer. Importantly, the post-treatment in 1.0M NaH2PO2+1.0M NaOH solution was able to eliminate the adsorbed thiourea and stimulate the catalytic activity of the immersion nickel layer for electroless nickel deposition. A combination of open circuit potential measurements and morphology studies indicated that an incubation step was required during the electroless nickel deposition on the immersion nickel layers after post-treatment. Although the catalytic activity of this Ni-activation method was slightly lower as compared to the conventional Pd-activation, both obtained electroless Ni-P layers exhibited similar morphology, chemical composition, corrosion resistance, and adhesion strength. Thus, this work demonstrated that the newly developed Ni-activation method was cost-effective and could be a promising replacement to expensive Pd-activation method currently used in printed circuit board industries. ? 2013.