Published in

Oxford University Press, Journal of Economic Entomology, 4(107), p. 1590-1598, 2014

DOI: 10.1603/ec13473

Links

Tools

Export citation

Search in Google Scholar

Application of Spinosad Increases the Susceptibility of Insecticide-Resistant <I>Alphitobius diaperinus</I> (Coleoptera: Tenebrionidae) to Pyrethroids

Journal article published in 2014 by Trevor A. Lambkin, Michael J. Furlong ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effect of spinosad exposure on the susceptibility of pyrethroid- and organophosphate-resistant populations of lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), to insecticides was investigated in broiler house farm and laboratory studies. A field pyrethroid- and organophosphate-resistant population showed a 3.6-fold increase in susceptibility to γ-cyhalothrin following spinosad treatment. Overall, cyfluthrin- and fenitrothion-resistant field populations were more susceptible to these insecticides following spinosad treatments, but populations that were not resistant showed no change in susceptibility following spinosad treatment. In a related study, three broiler farm beetle populations with very similar levels of cyfluthrin and γ-cyhalothrin resistance and similar susceptibilities to spinosad were used to investigate temporal effects of spinosad field treatments on the susceptibility to pyrethroids. Farm insecticide regimes applied at the start of each flock differed: the control broiler house received no insecticide applications, another house was systematically treated with cyfluthrin at the start of each study flock, and the third house was systematically treated with spinosad at the start of five flocks. Afterwards, treatments reverted to cyfluthrin on all farms. At the end of flocks, beetles were tested with cyfluthrin, γ-cyhalothrin, and spinosad. The control and cyfluthrin house beetles did not change susceptibility to pyrethroids over the period of the study. In the spinosad house, spinosad had no effect on spinosad susceptibility but dramatically increased cyfluthrin and γ-cyhalothrin susceptibilities. These new susceptibilities were maintained while spinosad applications continued, but pyrethroid susceptibility declined once spinosad applications ceased. This study provides evidence of a synergistic interaction between spinosad and pyrethroids in pyrethroid-resistant beetles. This evidence has significant implications for management of insecticide-resistant populations through an integrated spinosad-pyrethroid strategy that aims to minimize insecticide use while enhancing control.