Published in

Wiley, Molecular Microbiology, 5(63), p. 1345-1359, 2007

DOI: 10.1111/j.1365-2958.2007.05603.x

Links

Tools

Export citation

Search in Google Scholar

Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Lipooligosaccharides (LOSs) are antigenic glycolipids that are present in some species of Mycobacterium including the Canetti strain of M. tuberculosis. The core LOS structures from several mycobacterial organisms have been established, but the biosynthetic pathways of LOSs remain unknown. In this study, we describe two transposon insertion mutants of M. marinum that exhibit altered colony morphology. Cell wall analysis reveals that the MRS1271 mutant is defective in the synthesis of LOS-II, whereas the MRS1178 mutant accumulates an intermediate between LOS-I and -II. The genetic lesions were localized to two genes, MM2309 and MM2332. MM2309 encodes a UDP-glucose dehydrogenase that is involved in the synthesis of d-xylose. MM2332 is predicted to encode a decarboxylase. These two genes and a previously identified losA gene are localized in a gene cluster likely to be involved in the biosynthesis of LOSs. Our results also show that LOSs play an important role in sliding motility, biofilm formation, and infection of host macrophages. Taken together, our studies have identified, for the first time, a LOS biosynthetic locus. This is an important step in assessing the differential distribution of LOSs among Mycobacterium species and understanding the role of LOSs in mycobacterial virulence.