Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Sedimentary Geology, (297), p. 1-15, 2013

DOI: 10.1016/j.sedgeo.2013.08.012

Links

Tools

Export citation

Search in Google Scholar

Middle Eocene Nummulites and their offshore re-deposition: A case study from the Middle Eocene of the Venetian area, northeastern Italy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Middle Eocene Calcari nummulitici formation from northeastern Italy, Venetian area, represents a shallow marine carbonate ramp developed on the northern Tethyan margin. In the Monti Berici area, its main components are larger foraminifera and coralline red algal communities that constitute thick carbonate sedimentary successions. Middle ramp and proximal outer ramp environments are recognized using component relationships, biofacies and sedimentary features. The middle-ramp is characterized by larger flattened-lenticular Nummulites on palaeohighs between which rhodoliths formed. Larger Nummulites palaeohighs containing Nummulites millecaput, Nummulites crassus, Nummulites discorbinus and Nummulites cf. gizehensis developed more basinwards. The following relatively quiet environments of basin-wards of the palaeohighs represent areas of maximum carbonate production. The transition between the distal middle- and the proximal outer-ramp settings is marked in the study area by a large erosional surface which is interpreted to have been formed as a result of an erosive channel body filled in by deposits re-sedimented from shallower depths. These off-shore resedimented channelized deposits, ascribed to the Shallow Benthic Zone SBZ 15, lying on hemipelagic marls (planktonic foraminiferal zone E9 (P11)) allow for a biostratigraphic correlation to the Late Lutetian. The studied deposits, represented by packstone to rudstones, were displaced whilst still unlithified. The Lutetian– Bartonian regression along with the local tectonic activity promoted the production of a high amount of biogenic shallow-water carbonates mainly produced in the Mossano middle-ramp settings. These prograded towards the basinal areas with high-sedimentation rate of carbonate deposits characterized by the larger Nummulites rudstones. Such high amounts of sediment led to sediment instability which potentially could bem obilized either by return currents due to occasional major storms or by earthquakes induced by tectonic activity. These will have led to the offshore re-deposition of the Nummulites sediments into deeper water setting via the observed channels. Since potential migration pathways are short, such distal re-sedimented channel-filled material surrounded by hemipelagic marls is optimally placed for the formation of potential subsurface oil reservoirs.