Published in

The Royal Society, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1901(367), p. 3255-3266, 2009

DOI: 10.1098/rsta.2009.0096

Links

Tools

Export citation

Search in Google Scholar

Dynamics of globally delay-coupled neurons displaying subthreshold oscillations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We study an ensemble of neurons that are coupled through their time-delayed collective mean field. The individual neuron is modelled using a Hodgkin–Huxley-type conductance model with parameters chosen such that the uncoupled neuron displays autonomous subthreshold oscillations of the membrane potential. We find that the ensemble generates a rich variety of oscillatory activities that are mainly controlled by two time scales: the natural period of oscillation at the single neuron level and the delay time of the global coupling. When the neuronal oscillations are synchronized, they can be either in-phase or out-of-phase. The phase-shifted activity is interpreted as the result of a phase-flip bifurcation, also occurring in a set of globally delay-coupled limit cycle oscillators. At the bifurcation point, there is a transition from in-phase to out-of-phase (or vice versa) synchronized oscillations, which is accompanied by an abrupt change in the common oscillation frequency. This phase-flip bifurcation was recently investigated in two mutually delay-coupled oscillators and can play a role in the mechanisms by which the neurons switch among different firing patterns. ; Postprint (published version)