Dissemin is shutting down on January 1st, 2025

Links

Tools

Export citation

Search in Google Scholar

Lattice instability and superconductivity in electron doped (3,3) carbon nanotubes

Journal article published in 2009 by Klaus-Peter Bohnen, Rolf Heid, Che Ting Chan ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

We investigated the effect of electron doping on the phonon dispersion and electron-phonon coupling of a small diameter (3, 3) carbon nanotube using first principles density functional perturbation theory. Electron doping increases the number of nesting features in the electronic band structure, which is reflected in a wealth of phonon anomalies. We found that the overall electron-phonon coupling is substantially enhanced with respect to the pristine tube, which improves superconductivity. At the same time, the intrinsic Peierls instability remains similar, but the Peierls temperature still remains larger than the superconducting transition temperature.