Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, Journal of Applied Physiology, 6(109), p. 1801-1811, 2010

DOI: 10.1152/japplphysiol.00707.2010

Links

Tools

Export citation

Search in Google Scholar

Countermeasures against lumbar spine deconditioning in prolonged bed rest: Resistive exercise with and without whole body vibration

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To evaluate the effect of short-duration, high-load resistive exercise, with and without whole body vibration on lumbar muscle size, intervertebral disk and spinal morphology changes, and low back pain (LBP) incidence during prolonged bed rest, 24 subjects underwent 60 days of head-down tilt bed rest and performed either resistive vibration exercise ( n = 7), resistive exercise only ( n = 8), or no exercise ( n = 9; 2nd Berlin Bed-Rest Study). Discal and spinal shape was measured from sagittal plane magnetic resonance images. Cross-sectional areas (CSAs) of the multifidus, erector spinae, quadratus lumborum, and psoas were measured on para-axial magnetic resonance images. LBP incidence was assessed with questionnaires at regular intervals. The countermeasures reduced CSA loss in the multifidus, lumbar erector spinae and quadratus lumborum muscles, with greater increases in psoas muscle CSA seen in the countermeasure groups ( P ≤ 0.004). There was little statistical evidence for an additional effect of whole body vibration above resistive exercise alone on these muscle changes. Exercise subjects reported LBP more frequently in the first week of bed rest, but this was only significant in resistive exercise only ( P = 0.011 vs. control, resistive vibration exercise vs. control: P = 0.56). No effect of the countermeasures on changes in spinal morphology was seen ( P ≥ 0.22). The results suggest that high-load resistive exercise, with or without whole body vibration, performed 3 days/wk can reduce lumbar muscle atrophy, but further countermeasure optimization is required.