Dissemin is shutting down on January 1st, 2025

Published in

Journal of the Autonomic Nervous System, 1-2(59), p. 66-74

DOI: 10.1016/0165-1838(96)00008-2

Links

Tools

Export citation

Search in Google Scholar

Sympathetically-induced changes in microvascular cerebral blood flow and in the morphology of its low-frequency waves.

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The effect of bilateral cervical sympathetic nerve stimulation on microvascular cerebral blood flow, recorded at various depths in the parietal lobe and in ponto-mesencephalic areas, was investigated by laser-Doppler flowmetry in normotensive rabbits. These areas were chosen as representative of the vascular beds supplied by the carotid and vertebro-basilar systems, which exhibit different degrees of sympathetic innervation, the former being richer than the latter. Sympathetic stimulation at 30 imp/s affects cerebral blood flow in 77% of the parietal lobe and in 43% of the ponto-mesencephalic tested areas. In both cases the predominant effect was a reduction in blood flow (14.7 +/- 5.1% and 4.1 +/- 2.4%, respectively). The extent of the reduction in both areas was less if the stimulation frequency was decreased. Sometimes mean cerebral blood flow showed a small and transient increase, mainly in response to low-frequency stimulation. The morphology was analysed of low-frequency spontaneous oscillations in cerebral blood flow, attributed to vasomotion. Present in 41% of the tested areas (frequency 4-12 cycles/min, peak-to-peak amplitude 10-40% of mean value), these waves decreased in amplitude and increased in frequency during sympathetic stimulation, irrespective of changes in mean flow. The possibility has been proposed that the sympathetic action on low-frequency spontaneous oscillations may contribute to the protective influence that this system is known to exert on the blood-brain barrier in hypertension.