Dissemin is shutting down on January 1st, 2025

Published in

World Scientific Publishing, International Journal of Quantum Information, 07n08(12), p. 1560015

DOI: 10.1142/s0219749915600151

Links

Tools

Export citation

Search in Google Scholar

Experimental hybrid entanglement between quantum and classical states of light

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The realization of hybrid entanglement between a microscopic (quantum) and a macroscopic (classical) system, in analogy to the situation of the famous Schrödinger's cat paradox, is an important milestone, both from the fundamental perspective and for possible applications in the processing of quantum information. The most straightforward optical implementation of this condition is that of the entanglement between a single-photon and a coherent state. In this work, we describe the first step towards the generation of this type of hybrid entanglement from the experimental perspective.