Published in

Hindawi, Oxidative Medicine and Cellular Longevity, (2014), p. 1-15

DOI: 10.1155/2014/425496

Links

Tools

Export citation

Search in Google Scholar

Cucurbitacin E Has Neuroprotective Properties and Autophagic Modulating Activities on Dopaminergic Neurons

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Natural molecules are under intensive study for their potential as preventive and/or adjuvant therapies for neurodegenerative disorders such as Parkinson’s disease (PD). We evaluated the neuroprotective potential of Cucurbitacin E (CuE), a tetracyclic triterpenoid phytosterol extracted from the Ecballium elaterium (Cucurbitaceae), using a known cellular model of PD, NGF-differentiated PC12. In our post-mitotic experimental paradigm, neuronal cells were treated with the parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+) to provoke significant cellular damage and apoptosis, or with the potent N,N-diethyldithiocarbamate (DDC) to induce superoxide (O2•-) production, and CuE was administered prior and during the neurotoxic treatment. We measured cellular death and reactive oxygen species to evaluate the antioxidant and anti-apoptotic properties of CuE. In addition, we analyzed cellular macroautophagy, a bulk degradation process involving the lysosomal pathway. CuE showed Neuroprotective effects on MPP+ -induced cell death. However, CuE failed to rescue neuronal cells from oxidative stress induced by MPP+ or DDC. Microscopy and Western blot data show an intriguing involvement of CuE in maintaining lysosomal distribution and decreasing autophagy flux. Altogether these data indicate that CuE decreases neuronal death and autophagic flux in a post-mitotic cellular model of PD.