Springer (part of Springer Nature), Multimedia Tools and Applications, 3(58), p. 687-711
DOI: 10.1007/s11042-011-0763-8
Full text: Unavailable
In this paper, we propose a novel motion-based video retrieval approach to find desired videos from video databases through trajectory matching. The main component of our approach is to extract representative motion features from the video, which could be broken down to the following three steps. First, we extract the motion vectors from each frame of videos and utilize Harris corner points to compensate the effect of the camera motion. Second, we find interesting motion flows from frames using sliding window mechanism and a clustering algorithm. Third, we merge the generated motion flows and select representative ones to capture the motion features of videos. Furthermore, we design a symbolic based trajectory matching method for effective video retrieval. The experimental results show that our algorithm is capable to effectively extract motion flows with high accuracy and outperforms existing approaches for video retrieval.