Dissemin is shutting down on January 1st, 2025

Published in

EMBO Press, The EMBO Journal, 10(19), p. 2229-2236, 2000

DOI: 10.1093/emboj/19.10.2229

Links

Tools

Export citation

Search in Google Scholar

Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy

Journal article published in 2000 by Nico Nouwen, Henning Stahlberg ORCID, Anthony P. Pugsley, Andreas Engel
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Secretins, a superfamily of multimeric outer membrane proteins, mediate the transport of large macromolecules across the outer membrane of Gram-negative bacteria. Limited proteolysis of secretin PulD from the Klebsiella oxytoca pullulanase secretion pathway showed that it consists of an N-terminal domain and a protease-resistant C-terminal domain that remains multimeric after proteolysis. The stable C-terminal domain starts just before the region in PulD that is highly conserved in the secretin superfamily and apparently lacks the region at the C-terminal end to which the secretin-specific pilot protein PulS binds. Electron microscopy showed that the stable fragment produced by proteolysis is composed of two stacked rings that encircle a central channel and that it lacks the peripheral radial spokes that are seen in the native complex. Moreover, the electron microscopic images suggest that the N-terminal domain folds back into the large cavity of the channel that is formed by the C-terminal domain of the native complex, thereby occluding the channel, consistent with previous electrophysiological studies showing that the channel is normally closed.