Links

Tools

Export citation

Search in Google Scholar

Recent changes in freezing level heights in High Asia and their impact on glacier changes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The heights of the atmospheric freezing level have increased over most glacierized areas of High Asia during 1971-2010, especially in the Altai Mountains, the eastern Tianshan Mountains, and the northeastern margins of the Tibetan Plateau. The systematic increase of freezing level heights (FLHs) is evidenced from both radiosonde and NCEP/NCAR reanalysis data. Eleven glaciers with long-term observations are selected in typical high-elevation mountain ranges to examine the relationship between changes in FLHs and cryospheric response. Long-term trends in glacier mass balance and equilibrium line altitude (ELA) show significant correlations with changes in FLHs. A rise of 10-m in summer FLH causes mass balance of reference glaciers in High Asia to decrease by between 7 and 38 mm (water equivalent) and ELA to increase by between 3.1 and 9.8 m respectively, depending on location. Both relationships are statistically significant (p < 0.01) for most reference glaciers. Thus rapid deglaciation in these high mountain ranges during recent decades is related to the increase in FLH. Similar relationships may exist in other high-elevation glaciers of High Asia with changes in FLHs having significant ecological and social consequences, especially in arid and semi-arid regions.