Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Deep Sea Research Part I: Oceanographic Research Papers, 6(49), p. 971-990

DOI: 10.1016/s0967-0637(02)00006-7

Links

Tools

Export citation

Search in Google Scholar

Benthic community responses to pulses in pelagic food supply: North Pacific subtropical gyre

Journal article published in 2002 by K. L. Smith, R. B. Baldwin, R. J. Baldwin, D. M. Karl ORCID, Antje Boetius
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Time-series measurements of particulate organic carbon (POC) and particulate nitrogen (PN) fluxes, sediment community composition, and sediment community oxygen consumption (SCOC) were made at the Hawaii Ocean Time-series station (Sta. ALOHA, 4730 m depth) between December 1997 and January 1999. POC and PN fluxes, estimated from sediment trap collections made at 4000 m depth (730 m above bottom), peaked in late August and early September 1998. SCOC was measured in situ using a free vehicle grab respirometer that also recovered sediments for chemical and biological analyses on six cruises during the 1-year study. Surface sediment organic carbon, total nitrogen and phaeopigments significantly increased in September, corresponding to the pulses in particulate matter fluxes. Bacterial abundance in the surface sediment was highest in September with a subsurface high in November. Sediment macrofauna were numerically dominated by agglutinating Foraminifera fragments with highest density in September. Metazoan abundance, dominated by nematodes was also highest in September. SCOC significantly increased from a low in February to a high in September. POC and PN fluxes at 730 m above bottom were significantly correlated with SCOC with a lag time of ⩽14 days, linking pelagic food supply with benthic processes in the oligotrophic North Pacific gyre. The annual supply of POC into the abyss compared to the estimated annual demand by the sediment community (POC:SCOC) indicates that only 65% of the food demand is met by the supply of organic carbon.